Fast and Sensitive Determination of the Fungicide Carbendazim in Fruit Juices with an Immunosensor Based on White Light Reflectance Spectroscopy

Author:

Koukouvinos GeorgiosORCID,Karachaliou Chrysoula-EvangeliaORCID,Raptis Ioannis,Petrou Panagiota,Livaniou EvangeliaORCID,Kakabakos SotiriosORCID

Abstract

Carbendazim is a systemic benzimidazole-type fungicide with broad-spectrum activity against fungi that undermine food products safety and quality. Despite its effectiveness, carbendazim constitutes a major environmental pollutant, being hazardous to both humans and animals. Therefore, fast and reliable determination of carbendazim levels in water, soil, and food samples is of high importance for both food industry and public health. Herein, an optical biosensor based on white light reflectance spectroscopy (WLRS) for fast and sensitive determination of carbendazim in fruit juices is presented. The transducer is a Si/SiO2 chip functionalized with a benzimidazole conjugate, and determination is based on a competitive immunoassay format. Thus, for the assay, a mixture of an in-house developed rabbit polyclonal anti-carbendazim antibody with the standards or samples is pumped over the chip, followed by biotinylated secondary antibody and streptavidin. The WLRS platform allows for real-time monitoring of biomolecular interactions carried out onto the Si/SiO2 chip by transforming the shift in the reflected interference spectrum caused by the immunoreaction to effective biomolecular adlayer thickness. The sensor is able to detect 20 ng/mL of carbendazim in fruit juices with high accuracy and precision (intra- and inter-assay CVs ≤ 6.9% and ≤9.4%, respectively) in less than 30 min, applying a simple sample treatment that alleviates any “matrix-effect” on the assay results and a 60 min preincubation step for improving assay sensitivity. Excellent analytical characteristics and short analysis time along with its small size render the proposed WLRS immunosensor ideal for future on-the-spot determination of carbendazim in food and environmental samples.

Funder

European Social Fund-ESF

Publisher

MDPI AG

Subject

Clinical Biochemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3