Multiple Factors Influence Seasonal and Interannual Litterfall Production in a Tropical Dry Forest in Mexico

Author:

Morffi-Mestre Hernán,Ángeles-Pérez GregorioORCID,Powers Jennifer S.ORCID,Andrade José LuisORCID,Huechacona Ruiz Astrid Helena,May-Pat Filogonio,Chi-May Francisco,Dupuy Juan ManuelORCID

Abstract

Litterfall production plays a fundamental role in the dynamics and function of tropical forest ecosystems, as it supplies 70–80% of nutrients entering the soil. This process varies annually and seasonally, depending on multiple environmental factors. However, few studies spanning several years have addressed the combined effect of climate variables, successional age, topography, and vegetation structure in tropical dry forests. In this study, we evaluated monthly, seasonal, and annual litterfall production over a five-year period in semideciduous dry forests of different successional ages growing on contrasting topographic conditions (sloping or flat terrain) in Yucatan, Mexico. Its relationship with climate and vegetation structural variables were also analyzed using multiple linear regression and generalized linear models. Litterfall was measured monthly in 12 litterfall traps of 0.5 m2 in three sampling clusters (sets of four 400 m2 sampling plots) established in forests of five successional age classes, 3–5, 10–17, 18–25, 60–79, and >80 years (in the latter two classes either on slopping or on flat terrain), for a total of 15 sampling clusters and 180 litterfall traps. Litterfall production varied between years (negatively correlated with precipitation), seasons (positively correlated with wind speed and maximum temperature), and months (negatively correlated with relative humidity) and was higher in flat than in sloping sites. Litterfall production also increased with successional age until 18–25 years after abandonment, when it attained values similar to those of mature forests. It was positively correlated with the aboveground biomass of deciduous species but negatively correlated with the basal area of evergreen species. Our results show a rapid recovery of litterfall production with successional age of these forests, which may increase with climate changes such as less precipitation, higher temperatures, and higher incidence of hurricanes.

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3