High Spatiotemporal Remote Sensing Images Reveal Spatial Heterogeneity Details of Soil Organic Matter

Author:

Ma Qianli12,Luo Chong1ORCID,Meng Xiangtian1,Ruan Weimin1,Zang Deqiang3,Liu Huanjun1

Affiliation:

1. State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

3. School of Public Administration and Law, Northeast Agricultural University, Harbin 150030, China

Abstract

Soil is the foundation of sustainable agricultural development. Soil organic matter (SOM) is a key indicator for characterizing soil degradation, and remote sensing has been applied in SOM prediction. However, the differences in SOM prediction from different remote sensing data and the ability to combine multi-source and multi-phase remote sensing data for SOM prediction urgently need to be explored. The following research employed Landsat-8, Sentinel-2, and Gaofen-6 satellite data, utilizing a random forest algorithm to establish a SOM prediction model. It aimed to explore the variations in SOM prediction capabilities among these satellites in typical black soil regions. Additionally, the study involved creating multi-phase synthetic images for SOM prediction using Landsat-8 and Sentinel-2 images captured during three years of bare soil periods. Finally, the research examined the ability to combine three satellites to construct high spatiotemporal remote sensing images for SOM prediction. The results showed that (1) using Landsat-8 and Sentinel-2 to extract the principal components of the three-year bare soil period to construct the multi-phase synthetic image for SOM prediction, higher prediction accuracies can be obtained compared with the single-phase images. (2) The highest accuracy can be obtained using multi-phase synthetic images and high spatial resolution images to construct high spatiotemporal remote sensing images and perform SOM prediction (R2 is 0.65, RMSE is 0.67%, MAE is 0.42%). (3) Simultaneously, high spatiotemporal remote sensing images can reach 2 m spatial resolution to reveal the spatial heterogeneity of SOM. The causes of SOM spatial anomalies can be determined after analysis combined with soil degradation information. In subsequent research, SOM prediction should focus more on multi-sensor collaborative prediction.

Funder

Chinese Academy of Sciences, the Science and Technology Cooperation High-tech Industrialization Special Fund Project

National Key R&D Program of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3