Light Conversion upon Photoexcitation of NaBiF4:Yb3+/Ho3+/Ce3+ Nanocrystalline Particles

Author:

Trave Enrico1ORCID,Back Michele1ORCID,Pollon Davide1,Ambrosi Emmanuele1ORCID,Puppulin Leonardo12

Affiliation:

1. Department of Molecular Sciences and Nanosystems, Università Ca’ Foscari Venezia, Via Torino 155, 30172 Venice, Italy

2. WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Ishikawa, Japan

Abstract

NaBiF4 nanocrystalline particles were synthesized by means of a facile precipitation synthesis route to explore upconversion emission properties when doped with lanthanide ions. In particular, the incorporation of the Yb3+-Ho3+-Ce3+ triad with controlled ion concentration facilitates near-IR pumping conversion into visible light, with the possibility of color emission tuning depending on Ce3+ doping amount. We observed that introducing a Ce3+ content up to 20 at.% in NaBiF4:Yb3+/Ho3+, the chromaticity progressively turns from green for the Ce3+ undoped system to red. This is due to cross-relaxation mechanisms between Ho3+ and Ce3+ ions that influence the relative efficiency of the overall upconversion pathways, as discussed on the basis of a theoretical rate equation model. Furthermore, experimental results suggest that the photoexcitation of intra-4f Ho3+ transitions with light near the UV-visible edge can promote downconverted Yb3+ near-IR emission through quantum cutting triggered by Ho3+-Yb3+ energy transfer mechanisms. The present study evidences the potentiality of the developed NaBiF4 particles for applications that exploit lanthanide-based light frequency conversion and multicolor emission tuning.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3