Affiliation:
1. School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
Abstract
Lithium-sulfur batteries (LSBs), with their high theoretical specific capacity and energy density, have great potential to be a candidate for secondary batteries in the future. However, Li-S batteries suffer from multiple issues and challenges, for example, uneven growth of lithium dendrites, low utilization of the active material (sulfur), and low specific capacity. This paper reports a low-cost and anodic oxidation method to produce niobium pentoxide with a porous structure (P-Nb2O5). A simple one-step process was used to synthesize P-Nb2O5 with porous structures by anodizing niobium at 40 V in fluorinated glycerol. The porous Nb2O5 showed excellent rate capability and good capacity retention by maintaining its structural integrity, allowing us to determine the advantages of its porous structure. As a result of the highly porous structure, the sulfur was not only provided with adequate storage space and abundant adsorption points, but it was also utilized more effectively. The initial discharge capacity with the P-Nb2O5 cathode rose to 1106.8 mAh·g−1 and dropped to 810.7 mAh·g−1 after 100 cycles, which demonstrated the good cycling performance of the battery. This work demonstrated that the P-Nb2O5 prepared by the oxidation method has strong adsorption properties and good chemical affinity.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Hebei Province of China
Natural Science Foundation of Tianjin of China
Subject
General Materials Science,General Chemical Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献