Investigation of a Multi-Layer Absorber Exhibiting the Broadband and High Absorptivity in Red Light and Near-Infrared Region

Author:

Peng Guoxiang1,Li Wei-Zheng2,Tseng Ling-Chieh2,Yang Cheng-Fu23

Affiliation:

1. School of Ocean Information Engineering, Jimei University, Xiamen 361021, China

2. Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 811, Taiwan

3. Department of Aeronautical Engineering, Chaoyang University of Technology, Taichung 413, Taiwan

Abstract

In this study, an absorber with the characteristics of high absorptivity and ultra-wideband (UWB), which was ranged from the visible light range and near-infrared band, was designed and numerically analyzed using COMSOL Multiphysics® simulation software (version 6.0). The designed absorber was constructed by using two-layer square cubes stacked on the four-layer continuous plane films. The two-layer square cubes were titanium dioxide (TiO2) and titanium (Ti) (from top to bottom) and the four-layer continuous plane films were Poly(N-isopropylacrylamide) (PNIPAAm), Ti, silica (SiO2), and Ti. The analysis results showed that the first reason to cause the high absorptivity in UWB is the anti-reflection effect of top TiO2 layer. The second reason is that the three different resonances, including localized surface plasmon resonance, the propagating surface plasmon resonance, and the Fabry-Perot (FP) cavity resonance, are coexisted in the absorption peaks of the designed absorber and at least two of them can be excited at the same time. The third reason is that two FP resonant cavities were formed in the PNIPAAm and SiO2 dielectric layers. Because of the combination of the anti-reflection effect and the three different resonances, the designed absorber presented the properties of UWB and high absorptivity.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3