Ultra-Violet-Assisted Scalable Method to Fabricate Oxygen-Vacancy-Rich Titanium-Dioxide Semiconductor Film for Water Decontamination under Natural Sunlight Irradiation

Author:

Alyami Mohammed1

Affiliation:

1. Physics Department, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia

Abstract

This work reports the fabrication of titanium dioxide (TiO2) nanoparticle (NPs) films using a scalable drop-casting method followed by ultra-violet (UV) irradiation for creating defective oxygen vacancies on the surface of a fabricated TiO2 semiconductor film using an UV lamp with a wavelength oof 255 nm for 3 h. The success of the use of the proposed scalable strategy to fabricate oxygen-vacancy-rich TiO2 films was assessed through UV–Vis spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The Ti 2p XPS spectra acquired from the UV-treated sample showed the presence of additional Ti3+ ions compared with the untreated sample, which contained only Ti4+ ions. The band gap of the untreated TiO2 film was reduced from 3.2 to 2.95 eV after UV exposure due to the created oxygen vacancies, as evident from the presence of Ti3+ ions. Radiation exposure has no significant influence on sample morphology and peak pattern, as revealed by the SEM and XRD analyses, respectively. Furthermore, the photocatalytic activity of the fabricated TiO2 films for methylene-blue-dye removal was found to be 99% for the UV-treated TiO2 films and compared with untreated TiO2 film, which demonstrated only 77% at the same operating conditions under natural-sunlight irradiation. The proposed UV-radiation method of oxygen vacancy has the potential to promote the wider application of photo-catalytic TiO2 semiconductor films under visible-light irradiation for solving many environmental and energy-crisis challenges for many industrial and technological applications.

Funder

Deputyship Research and Innovation, Ministry of Education, in Saudi Arabia

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3