Enhancing the Catalytic Activity of Mo(110) Surface via Its Alloying with Submonolayer to Multilayer Boron Films and Oxidation of the Alloy: A Case of (CO + O2) to CO2 Conversion

Author:

Men Yong1,Magkoev Tamerlan T.23ORCID,Behjatmanesh-Ardakani Reza4ORCID,Zaalishvili Vladislav B.3,Ashkhotov Oleg G.5ORCID

Affiliation:

1. School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China

2. Laboratory of Adsorption Phenomena, Department of Condensed Matter Physics, North Ossetian State University, Vatutina 44-46, 362025 Vladikavkaz, Russia

3. Geophysical Institute—The Affiliate of Vladikavkaz Scientific Centre of the Russian Academy of Sciences, Markova 93a, 362002 Vladikavkaz, Russia

4. Department of Chemistry, Faculty of Science, Payame Noor University, Tehran P.O. Box 19395-4697, Iran

5. Institute of Informatics, Electronics and Robotics, Kabardino-Balkarian State University, Chernyshevskogo 173, 360004 Nal’chik, Russia

Abstract

In-situ formation of boron thin films on the Mo(110) surface, as well as the formation of the molybdenum boride and its oxide and the trends of carbon monoxide catalytic oxidation on the substrates formed, have been studied in an ultra-high vacuum (UHV) by a set of surface-sensitive characterization techniques: Auger and X-ray photoelectron spectroscopy (AES, XPS), low-energy ion scattering (LEIS), reflection-absorption infrared spectroscopy (RAIRS), temperature-programmed desorption (TPD), electron energy loss spectroscopy (EELS) and work function measurements using the Anderson method. The boron deposited at Mo(110) via electron-beam deposition at a substrate temperature of 300 K grows as a 2D layer, at least in submonolayer coverage. Such a film is bound to the Mo(110) via polarized chemisorption bonds, dramatically changing the charge density at the substrate surface manifested by the Mo(110) surface plasmon damping. Upon annealing of the B-Mo(110) system, the boron diffuses into the Mo(110) bulk following a two-mode regime: (1) quite easy dissolution, starting at a temperature of about 450 K with an activation energy of 0.4 eV; and (2) formation of molybdenum boride at a temperature higher than 700 K with M-B interatomic bonding energy of 3.8 eV. The feature of the formed molybdenum boride is that there is quite notable carbon monoxide oxidation activity on its surface. A further dramatic increase of such an activity is achieved when the molybdenum boride is oxidized. The latter is attributed to more activated states of molecular orbitals of coadsorbed carbon monoxide and oxygen due to their enhanced interaction with both boron and oxygen species for MoxByOz ternary compound, compared to only boron for the Mox’By’ double alloy.

Funder

Russian Ministry of Science and Higher Education

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3