A Deep Anomaly Detection System for IoT-Based Smart Buildings

Author:

Cicero Simona1,Guarascio Massimo2ORCID,Guerrieri Antonio2ORCID,Mungari Simone23ORCID

Affiliation:

1. Independent Researcher, 87032 Amantea, CS, Italy

2. ICAR-CNR, Institute for High-Performance Computing and Networking, National Research Council of Italy, Via P. Bucci 8/9C, 87036 Rende, CS, Italy

3. University of Calabria, Via P. Bucci, 87036 Rende, CS, Italy

Abstract

In recent years, technological advancements in sensor, communication, and data storage technologies have led to the increasingly widespread use of smart devices in different types of buildings, such as residential homes, offices, and industrial installations. The main benefit of using these devices is the possibility of enhancing different crucial aspects of life within these buildings, including energy efficiency, safety, health, and occupant comfort. In particular, the fast progress in the field of the Internet of Things has yielded exponential growth in the number of connected smart devices and, consequently, increased the volume of data generated and exchanged. However, traditional Cloud-Computing platforms have exhibited limitations in their capacity to handle and process the continuous data exchange, leading to the rise of new computing paradigms, such as Edge Computing and Fog Computing. In this new complex scenario, advanced Artificial Intelligence and Machine Learning can play a key role in analyzing the generated data and predicting unexpected or anomalous events, allowing for quickly setting up effective responses against these unexpected events. To the best of our knowledge, current literature lacks Deep-Learning-based approaches specifically devised for guaranteeing safety in IoT-Based Smart Buildings. For this reason, we adopt an unsupervised neural architecture for detecting anomalies, such as faults, fires, theft attempts, and more, in such contexts. In more detail, in our proposal, data from a sensor network are processed by a Sparse U-Net neural model. The proposed approach is lightweight, making it suitable for deployment on the edge nodes of the network, and it does not require a pre-labeled training dataset. Experimental results conducted on a real-world case study demonstrate the effectiveness of the developed solution.

Funder

the Italian MUR

European Union

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3