Bone Regeneration Potential of Human Dental Pulp Stem Cells Derived from Elderly Patients and Osteo-Induced by a Helioxanthin Derivative

Author:

Sato Marika,Kawase-Koga Yoko,Yamakawa Daiki,Fujii Yasuyuki,Chikazu Daichi

Abstract

Human dental pulp stem cells (DPSCs) have high clonogenic and proliferative potential. We previously reported that a helioxanthin derivative (4-(4-methoxyphenyl)pyrido[40,30:4,5]thieno[2–b]pyridine-2-carboxamide (TH)) enhances osteogenic differentiation of DPSCs derived from young patients. However, in the clinical field, elderly patients more frequently require bone regenerative therapy than young patients. In this study, we examined and compared the osteogenic differentiation potential of TH-induced DPSCs from elderly patients and young patients to explore the potential clinical use of DPSCs for elderly patients. DPSCs were obtained from young and elderly patients and cultured in osteogenic medium with or without TH. We assessed the characteristics and osteogenic differentiation by means of specific staining and gene expression analyses. Moreover, DPSC sheets were transplanted into mouse calvarial defects to investigate osteogenesis of TH-induced DPSCs by performing micro-computed tomography (micro-CT). We demonstrated that osteogenic conditions with TH enhance the osteogenic differentiation marker of DPSCs from elderly patients as well as young patients in vitro. In vivo examination showed increased osteogenesis of DPSCs treated with TH from both elderly patients and young patients. Our results suggest that the osteogenic differentiation potential of DPSCs from elderly patients is as high as that of DPSCs from young patients. Moreover, TH-induced DPSCs showed increased osteogenic differentiation potential, and are thus a potentially useful cell source for bone regenerative therapy for elderly patients.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3