Percolation Conduction of Carbon Nanocomposites

Author:

Bocharov Grigorii S.,Eletskii Alexander V.

Abstract

Carbon nanocomposites present a new class of nanomaterials in which conducting carbon nanoparticles are a small additive to a non-conducting matrix. A typical example of such composites is a polymer matrix doped with carbon nanotubes (CNT). Due to a high aspect ratio of CNTs, inserting rather low quantity of nanotubes (on the level of 0.01%) results in the percolation transition, which causes the enhancement in the conductivity of the material by 10–12 orders of magnitude. Another type of nanocarbon composite is a film produced as a result of reduction of graphene oxide (GO). Such a film is consisted of GO fragments whose conductivity is determined by the degree of reduction. A distinctive peculiarity of both types of nanocomposites relates to the dependence of the conductivity of those materials on the applied voltage. Such a behavior is caused by a non-ideal contact between neighboring carbon nanoparticles incorporated into the composite. The resistance of such a contact depends sharply on the electrical field strength and therefore on the distance between neighboring nanoparticles. Experiments demonstrating non-linear, non-Ohmic behavior of both above-mentioned types of carbon nanocomposites are considered in the present article. There has been a model description presented of such a behavior based on the quasi-classical approach to the problem of electron tunneling through the barrier formed by the electric field. The calculation results correspond qualitatively to the available experimental data.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3