Exploring the Potential of Therapeutic Agents Targeted towards Mitigating the Events Associated with Amyloid-β Cascade in Alzheimer’s Disease

Author:

Behl Tapan,Kaur Ishnoor,Fratila Ovidiu,Brata Roxana,Bungau SimonaORCID

Abstract

One of the most commonly occurring neurodegenerative disorders, Alzheimer’s disease (AD), encompasses the loss of cognitive and memory potential, impaired learning, dementia and behavioral defects, and has been prevalent since the 1900s. The accelerating occurrence of AD is expected to reach 65.7 million by 2030. The disease results in neural atrophy and disrupted inter-neuronal connections. Amongst multiple AD pathogenesis hypotheses, the amyloid beta (Aβ) cascade is the most relevant and accepted form of the hypothesis, which suggests that Aβ monomers are formed as a result of the cleavage of amyloid precursor protein (APP), followed by the conversion of these monomers to toxic oligomers, which in turn develop β-sheets, fibrils and plaques. The review targets the events in the amyloid hypothesis and elaborates suitable therapeutic agents that function by hindering the steps of plaque formation and lowering Aβ levels in the brain. The authors discuss treatment possibilities, including the inhibition of β- and γ-secretase-mediated enzymatic cleavage of APP, the immune response generating active immunotherapy and passive immunotherapeutic approaches targeting monoclonal antibodies towards Aβ aggregates, the removal of amyloid aggregates by the activation of enzymatic pathways or the regulation of Aβ circulation, glucagon-like peptide-1 (GLP-1)-mediated curbed accumulation and the neurotoxic potential of Aβ aggregates, bapineuzumab-mediated vascular permeability alterations, statin-mediated Aβ peptide degradation, the potential role of ibuprofen and the significance of natural drugs and dyes in hindering the amyloid cascade events. Thus, the authors aim to highlight the treatment perspective, targeting the amyloid hypothesis, while simultaneously emphasizing the need to conduct further investigations, in order to provide an opportunity to neurologists to develop novel and reliable treatment therapies for the retardation of AD progression.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3