Enhancing the Therapeutic Potential of CCL2-Overexpressing Mesenchymal Stem Cells in Acute Stroke

Author:

Lee Sanghun,Kim Ok JoonORCID,Lee Kee Ook,Jung Hyeju,Oh Seung-Hun,Kim Nam KeunORCID

Abstract

Although intravenous administration of mesenchymal stem cells (MSCs) is effective for experimental stroke, low engraftment and the limited functional capacity of transplanted cells are critical hurdles for clinical applications. C–C motif chemokine ligand 2 (CCL2) is associated with neurological repair after stroke and delivery of various cells into the brain via CCL2/CCR2 (CCL2 receptor) interaction. In this study, after CCL2-overexpressing human umbilical cord-derived MSCs (hUC-MSCs) were intravenously transplanted with mannitol in rats with middle cerebral arterial occlusion, we compared the differences between four different treatment groups: mannitol + CCL2-overexpressing hUC-MSCs (CCL2-MSC), mannitol + naïve hUC-MSCs (M-MSC), mannitol only, and control. At four-weeks post-transplantation, the CCL2-MSC group showed significantly better functional recovery and smaller stroke volume relative to the other groups. Additionally, we observed upregulated levels of CCR2 in acute ischemic brain and the increase of migrated stem cells into these areas in the CCL2-MSC group relative to the M-MSC. Moreover, the CCL2-MSC group displayed increased angiogenesis and endogenous neurogenesis, decreased neuro-inflammation but with increased healing-process inflammatory cells relative to other groups. These findings indicated that CCL2-overexpressing hUC-MSCs showed better functional recovery relative to naïve hUC-MSCs according to the increased migration of these cells into brain areas of higher CCR2 expression, thereby promoting subsequent endogenous brain repair.

Funder

Ministry of Health and Welfare

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3