Abstract
Crop fresh weight and leaf area are considered non-destructive growth factors due to their direct relation to vegetative growth and carbon assimilation. Several methods to measure these parameters have been introduced; however, measuring these parameters using the existing methods can be difficult. Therefore, a non-destructive measurement method with high versatility is essential. The objective of this study was to establish a non-destructive monitoring system for estimating the fresh weight and leaf area of trellised crops. The data were collected from a greenhouse with sweet peppers (Capsicum annuum var. annuum); the target growth factors were the crop fresh weight and leaf area. The crop fresh weight was estimated based on the total system weight and volumetric water content using a simple formula. The leaf area was estimated using top-view images of the crops and a convolutional neural network (ConvNet). The estimated crop fresh weight and leaf area exhibited average R2 values of 0.70 and 0.95, respectively. The simple calculation was able to avoid overfitting with fewer limitations compared with the previous study. ConvNet was able to analyze raw images and evaluate the leaf area without additional sensors and features. As the simple calculation and ConvNet could adequately estimate the target growth factors, the monitoring system can be used for data collection in practice owing to its versatility. Therefore, the proposed monitoring system can be widely applied for diverse data analyses.
Funder
Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献