Abstract
There exist several methods aimed at human–robot physical interaction (HRpI) to provide physical therapy in patients. The use of haptics has become an option to display forces along a given path so as to it guides the physiotherapist protocol. Critical in this regard is the motion control for haptic guidance to convey the specifications of the clinical protocol. Given the inherent patient variability, a conclusive demand of these HRpI methods is the need to modify online its response with neither rejecting nor neglecting interaction forces but to process them as patient interaction. In this paper, considering the nonlinear dynamics of the robot interacting bilaterally with a patient, we propose a novel adaptive control to guarantee stable haptic guidance by processing the causality of patient interaction forces, despite unknown robot dynamics and uncertainties. The controller implements radial basis neural network with daughter RASP1 wavelets activation function to identify the coupled interaction dynamics. For an efficient online implementation, an output infinite impulse response filter prunes negligible signals and nodes to deal with overparametrization. This contributes to adapt online the feedback gains of a globally stable discrete PID regulator to yield stiffness control, so the user is guided within a perceptual force field. Effectiveness of the proposed method is verified in real-time bimanual human-in-the-loop experiments.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献