Abstract
In a series of collaborative Russian–American works (Levina and Montgomery, 2009–2015), we applied the fundamental ideas of self-organization in turbulence with broken mirror symmetry, the so-called “helical” turbulence. In this context, tropical cyclogenesis is considered as a threshold extreme event in the three-dimensional helical moist convective atmospheric turbulence of a vorticity-rich environment of a pre-depression zone. This allowed us to discover a large-scale vortex instability and answer the question “When will cyclogenesis commence given a favorable tropical environment?”. The new instability emerges against the background of seemingly disorganized convection, without a well-defined center of near-surface circulation and noticeably precedes the formation of a tropical depression. This can give the fundamental ground and quantitative substantiation for the term “Potential Tropical Cyclone” as a beginning of TC genesis. In the present work, we explore in detail the crucial role of special convective coherent structures of cloud scales—vortical hot towers (VHTs)—in the formation and maintenance of the secondary circulation and, therefore, of the whole mesoscale vortex system. On this basis, we propose how the onset of large-scale instability, i.e., the beginning of TC genesis, can be diagnosed exactly and distantly with VHTs patterns in the field of temperature (satellite data) and vertical helicity (cloud-resolving numerical analysis). The present research is intended to contribute to a recently initiated development of operational diagnosis of the beginning of TC genesis based on GOES Imagery and supported by cloud-resolving numerical modeling.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献