Abstract
Magnetorheological fluids (MRFs) are composites of micron-sized and/or nano-sized Fe particles and nonmagnetic oils, and their rheological properties change with changes in the magnetic field. To distinguish between material and mechanical deterioration, we developed a durability test system without the influence of mechanical sealing and bearing on the MRFs. We used a set of rotors and stators to create a V-shaped MRF layer. However, the test device produces a constant magnetic field with a permanent magnet instead of an electromagnetic coil to make a compact design and cannot be tested under various dynamic magnetic inputs. Therefore, we developed a durability test system with an electric magnet to create a variable magnetic input and two sets of rotors, and compared their magnetic properties and the results of the durability tests. From the findings, the measured torque for the parallel plate case was lower than the predicted value. In contrast, the V-shaped disk exhibits a higher torque than the estimated values. Durability tests for the two types of MRFs were conducted. The torque variation for the nano MRF is significantly smaller for both the parallel and V-shaped plates. In addition, the duration of both MRFs for the V-shaped plate was much shorter than that for the parallel plate.
Funder
Japan Science and Technology Agency
Subject
Control and Optimization,Control and Systems Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献