Coupling Machine and Deep Learning with Explainable Artificial Intelligence for Improving Prediction of Groundwater Quality and Decision-Making in Arid Region, Saudi Arabia

Author:

Alshehri Fahad1ORCID,Rahman Atiqur2

Affiliation:

1. Abdullah Alrushaid Chair for Earth Science Remote Sensing Research, Geology and Geophysics Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia

2. Department of Geography, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India

Abstract

Recently, machine learning (ML) and deep learning (DL) models based on artificial intelligence (AI) have emerged as fast and reliable tools for predicting water quality index (WQI) in various regions worldwide. In this study, we propose a novel stacking framework based on DL models for WQI prediction, employing a convolutional neural network (CNN) model. Additionally, we introduce explainable AI (XAI) through XGBoost-based SHAP (SHapley Additive exPlanations) values to gain valuable insights that can enhance decision-making strategies in water management. Our findings demonstrate that the stacking model achieves the highest accuracy in WQI prediction (R2: 0.99, MAPE: 15.99%), outperforming the CNN model (R2: 0.90, MAPE: 58.97%). Although the CNN model shows a relatively high R2 value, other statistical measures indicate that it is actually the worst-performing model among the five tested. This discrepancy may be attributed to the limited training data available for the CNN model. Furthermore, the application of explainable AI (XAI) techniques, specifically XGBoost-based SHAP values, allows us to gain deep insights into the models and extract valuable information for water management purposes. The SHAP values and interaction plot reveal that elevated levels of total dissolved solids (TDS), zinc, and electrical conductivity (EC) are the primary drivers of poor water quality. These parameters exhibit a nonlinear relationship with the water quality index, implying that even minor increases in their concentrations can significantly impact water quality. Overall, this study presents a comprehensive and integrated approach to water management, emphasizing the need for collaborative efforts among all stakeholders to mitigate pollution levels and uphold water quality. By leveraging AI and XAI, our proposed framework not only provides a powerful tool for accurate WQI prediction but also offers deep insights into the models, enabling informed decision-making in water management strategies.

Funder

Deputyship for Research and Innovation, Ministry of Education, Saudi Arabia

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3