HPLC-Based Chemometric Analysis for Coffee Adulteration

Author:

Cheah Wai Lok,Fang MingchihORCID

Abstract

Coffee is one of the top ten most adulterated foods. Coffee adulterations are mainly performed by mixing other low-value materials into coffee beans after roasting and grinding, such as spent coffee grounds, maize, soybeans and other grain products. The detection of adulterated coffee by high performance liquid chromatography (HPLC) is recognized as a targeted analytical method, which carbohydrates and other phenolic compounds are usually used as markers. However, the accurate qualitation and quantitation of HPLC analyses are time consuming. This study developed a chemometric analysis or called non-targeted analysis for coffee adulteration. The HPLC chromatograms were obtained by direct injection of liquid coffee into HPLC without sample preparation and the identification of target analytes. The distinction between coffee and adulterated coffee was achieved by statistical method. The HPLC-based chemometric provided more characteristic information (separated compounds) compared to photospectroscopy chemometric which only provide information of functional groups. In this study, green Arabica coffee beans, soybeans and green mung beans were roasted in industrial coffee bean roaster and then ground. Spent coffee ground was dried. Coffee and adulterants were mixed at different ratio before conducting HPLC analysis. Principal component analysis (PCA) toward HPLC data (retention time and peak intensity) was able to separate coffee from adulterated coffee. The detection limit of this method was 5%. Two models were built based on PCA data as well. The first model was used to differentiate coffee sample from adulterated coffee. The second model was designed to identify the specific adulterants mixed in the adulterated coffee. Various parameters such as sensitivity (SE), specificity (SP), reliability rate (RLR), positive likelihood (+LR) and negative likelihood (−LR) were applied to evaluate the performances of the designed models. The results showed that PCA-based models were able to discriminate pure coffee from adulterated sample (coffee beans adulterated with 5%–60% of soybeans, green mung beans or spent coffee grounds). The SE, SP, RLR, +LR and −LR for the first model were 0.875, 0.938, 0.813, 14.1 and 0.133, respectively. In the second model, it can correctly distinguish the adulterated coffee from the pure coffee. However, it had only about a 30% chance to correctly determine the specific adulterant out of three designed adulterants mixed into coffee. The SE, RLR and −LR were 0.333, 0.333 and 0.667, respectively, for the second model. Therefore, HPLC-based chemometric analysis was able to detect coffee adulteration. It was very reliable on the discrimination of coffee from adulterated coffee. However, it may need more work to tell discern which kind adulterant in the adulterated coffee.

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health(social science),Microbiology,Food Science

Reference26 articles.

1. Coffee Market Report: November 2019http://www.ico.org/documents/cy2019-20/cmr-1119-e.pdf

2. Food Chemicals Codex;Song,2013

3. Evaluation of the potential of SPME-GC-MS and chemometrics to detect adulteration of ground roasted coffee with roasted barley

4. Coffee Adulteration: More than Two Decades of Research

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3