Crash Risk Assessment for Heterogeneity Traffic and Different Vehicle-Following Patterns Using Microscopic Traffic Flow Data

Author:

Shen Jiajun,Yang GuangchuanORCID

Abstract

This paper investigates the impacts of heavy vehicles (HV) on speed variation and assesses the rear-end crash risk for four vehicle-following patterns in a heterogeneous traffic flow condition using three surrogate safety measures: speed variation, time-to-collision (TTC), and deceleration rate to avoid a crash (DRAC). A video-based data collection approach was employed to collect the speed of each individual vehicle and vehicle-following headway; a total of 3859 vehicle-following pairs were identified. Binary logistic regression modeling was employed to assess the impacts of HV percentage on crash risk. TTCs and DRACs were calculated based on the collected traffic flow data. Analytical models were developed to estimate the minimum safe vehicle-following headways for the four vehicle-following patterns. Field data revealed that the variation of speed first increased with HV percentage and reached the maximum when HV percentage was at around 0.35; then, it displayed a decreasing trend with HV percentage. Binary logistic regression modeling results suggest that a high risk of rear-end collision is expected when HV percentage is between 0.19 and 0.5; while, when HV percentage is either below 0.19 or exceed 0.5, a low risk of rear-end collision is anticipated. Analytical modeling results show that the passenger car (PC)-HV vehicle-following pattern requires the largest minimum safe space headway, followed by HV-HV, PC-PC, and HV-PC vehicle-following patterns. Findings from this research present insights to transportation engineers regarding the development of crash mitigation strategies and have the potential to advance the design of real-time in-vehicle forward collision warnings to minimize the risk of rear-end crash.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3