Effects of Chemical and Solar Soil-Disinfection Methods on Soil Bacterial Communities

Author:

Yun Cuixia,Liu Enke,Rippa Massimo,Mormile Pasquale,Sun Dongbao,Yan Changrong,Liu Qin

Abstract

The actctivated carbon + solar radiation membrane is an eco-friendly soil disinfestations method for managing soil-borne plant pathogens. However, little was known the impact of Activated carbon + solar radiation membrane on bacterial community structure in strawberry production systems under field conditions. A comprehensive evaluation of the impacts of different soil disinfection methods on the bacterial community structure is fundamental to understand the role of disinfection in maintaining soil health. The changes in the soil bacterial diversity and community composition were detected using realtime fluorescence quantitative PCR (RTFQ PCR) and next-generation sequencing techniques to better understand the effect of soil disinfection. The bacterial community composition was monitored after disinfection using dazomet (DZ), chloropicrin (CP), 100 kg/ha activated carbon + solar radiation membrane (AC1), 200 kg/ha activated carbon + solar radiation membrane (AC2), and 300 kg/ha activated carbon + solar radiation membrane (AC3) and compared with the control (CT). The results indicated that the different dosages of activated carbon (AC1, AC2, and AC3) did not affect the bacterial community structure. On the other hand, DZ and CP considerably reduced the soil biomass and abundance of bacterial species. Chemical fumigants influenced the bacterial community structure, with DZ treatment leading to the dominance of the phylum Firmicutes, accounting for approximately 54%. After fumigation with CP, Proteobacteria and Acidobacteria were the dominant phyla. Beta diversity analysis and principal coordinate analysis revealed that the bacterial communities in the soil treated with DZ and CP formed clusters. Redundancy analysis indicated that soil pH, available potassium, and available phosphorus were the key factors influencing microbial metabolic functional diversity. Thus, it was verified that the damage caused by activated carbon + solar radiation membrane—a potential alternative for chemical fumigant—to the soil bacterial community was less than that caused by chemicals DZ and CP.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3