Probabilistic Prediction of Corrosion Damage of Steel Structures in the Vicinity of Roads

Author:

Kubzova MonikaORCID,Krivy VitORCID,Kreislova KaterinaORCID

Abstract

The design, construction, and maintenance of steel structures must be carried out in a way that ensures they will be able to reliably operate for the whole duration of their planned service life. To ensure sufficient durability, it is necessary to determine and evaluate the characteristics of the appropriate environment in which the structure will be placed. This submission focuses on the specific environment surrounding roads that are treated with de-icing salts during winter maintenance. It investigates the dependency between corrosive damage to the structure and the relevant parameters of the environment. Basic corrosive factors include temperature, relative humidity, deposition of chlorides and sulfur dioxide, precipitation, the pH of precipitation as well as many other parameters. An accurate estimate of corrosive damage requires an analysis of the long-term trends in concentrations of individual corrosive factors, while respecting their randomly varying attributes. The article, hence, introduces and evaluates stochastic prediction models that are based on long-term programs focusing on the evaluation of the corrosive aggressiveness of the environment, while taking into account random variations of the nature of the input parameters. The use of stochastic prediction models allows us to perform sensitivity analysis that can determine the impact of specific corrosive factors on the corrosive damage caused to the structure. The article is supplemented by sensitivity analysis focusing on an evaluation from the effects of the deposition of chlorides on the corrosive damage to steel bridge structures. The analysis was carried out using data obtained from experimental measurements of the deposition rates of chlorides in the vicinity of roads in the Czech Republic.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Numerical modelling of stress field near a crack tip influenced by corrosion;STRUCTURAL AND PHYSICAL ASPECTS OF CONSTRUCTION ENGINEERING 2022 (SPACE 2022): 5th International Scientific Conference;2023

2. Fatigue crack propagation under corrosion of high-strength steel;Procedia Structural Integrity;2023

3. Atmospheric corrosion due to amine emissions from carbon capture plants;International Journal of Greenhouse Gas Control;2021-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3