Annoyance Based Vibro-Acoustic Comfort Evaluation of as Summation of Stimuli Annoyance in the Context of Human Exposure to Noise and Vibration in Buildings

Author:

Nering KrzysztofORCID,Kowalska-Koczwara Alicja,Stypuła Krzysztof

Abstract

This paper presents the issues of assessing the comfort of people staying indoors who are exposed to vibrations and material noise caused by vibrations of partitions like floors and walls (ground-borne noise). Current criteria in the evaluation of vibrational and acoustic comfort cannot be assessed in the context of the simultaneous occurrence of stimuli such as noise and vibration. Railway transport, including passenger and cargo transport, is becoming increasingly prevalent, and new railway lines are being planned for environmental reasons. Sometimes, there are changes in stimuli produced by existing railway lines. For example, high-speed trains appear on an old railway track. Such a situation appeared on the Central Railway Line in Poland, which is still used by old trains, yet its operator plans to raise their speed limits. The analysis of the problem of the simultaneous occurrence of stimuli presented in this paper was based on measurements performed in a residential building located near the Central Railway Main Line in the city Zawiercie. Noise and vibration as the analyzed stimuli in both cases meet comfort requirements, yet when exposure to two stimuli was considered, comfort may be at risk.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference42 articles.

1. Acoustics for Supportive and Healthy Buildings: Emerging Themes on Indoor Soundscape Research

2. Relating to the Assessment and Management of Environmental Noise,2002

3. Concerning Integrated Pollution Prevention and Control,2008

4. Guide to Evaluation of Human Exposure to Vibration in Buildings, Vibration Sources Other than Blasting,2008

5. Guide to Measurement and Evaluation of Human Exposure to Wholebody Mechanical Vibration and Repeated Shock,1999

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3