Abstract
This article focuses on the analysis and numerical modeling of a concrete slab interacting with subsoil. This is a complex task for which a number of factors enter into the calculation, including the scope or dimension of the model, the non-linear solution approach, the choice of input parameters, and so forth. The aim of this article is to present one possible approach, which is based on a non-linear analysis and a three-dimensional computational model. Five slabs were chosen for modeling and analysis. The experiments involved slabs of 2000 × 2000 mm and a thickness of 150 mm, which were tested using specialized equipment. The slabs included a reinforced concrete slab, a standard concrete slab, and three fiber-reinforced concrete slabs. The fiber-reinforced slabs had fiber volume fractions of 0.32%, 0.64%, and 0.96%, which corresponded to fiber dosages of 25, 50, and 75 kg/m3. A reinforced concrete slab was chosen for the calibration model and the initial parametric study. The numerical modeling itself was based on a detailed evaluation of experiments, tests, and recommendations. The finite element method was used to solve the three-dimensional numerical model, where the fracture-plastic material of the model was used for concrete and fiber-reinforced concrete. In this paper, the performed numerical analyses are compared and evaluated, and recommendations are made for solving this problem.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献