ZnO@ZIF-8 Core-Shell Structure Gas Sensors with Excellent Selectivity to H2

Author:

Lv Ruonan,Zhang Qinyi,Wang Wei,Lin Yaojun,Zhang Shunping

Abstract

As the energy crisis becomes worse, hydrogen as a clean energy source is more and more widely used in industrial production and people’s daily life. However, there are hidden dangers in hydrogen storage and transportation, because of its flammable and explosive features. Gas detection is the key to solving this problem. High quality sensors with more practical and commercial value must be able to accurately detect target gases in the environment. Emerging porous metal-organic framework (MOF) materials can effectively improve the selectivity of sensors as a result of high surface area and coordinated pore structure. The application of MOFs for surface modification to improve the selectivity and sensitivity of metal oxides sensors to hydrogen has been widely investigated. However, the influence of MOF modified film thickness on the selectivity of hydrogen sensors is seldom studied. Moreover, the mechanism of the selectivity improvement of the sensors with MOF modified film is still unclear. In this paper, we prepared nano-sized ZnO particles by a homogeneous precipitation method. ZnO nanoparticle (NP) gas sensors were prepared by screen printing technology. Then a dense ZIF-8 film was grown on the surface of the gas sensor by hydrothermal synthesis. The morphology, the composition of the elements and the characters of the product were analyzed by X-ray diffraction analysis (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM), energy dispersive spectrometer (EDS), Brunauer-Emmett-Teller (BET) and differential scanning calorimetry (DSC). It is found that the ZIF-8 film grown for 4 h cannot form a dense core-shell structure. The thickness of ZIF-8 reaches 130 nm at 20 h. Through the detection and analysis of hydrogen (1000 ppm), ethanol (100 ppm) and acetone (50 ppm) from 150 °C to 290 °C, it is found that the response of the ZnO@ZIF-8 sensors to hydrogen has been significantly improved, while the response to ethanol and acetone was decreased. By comparing the change of the response coefficient, when the thickness of ZIF-8 is 130 nm, the gas sensor has a significantly improved selectivity to hydrogen at 230 °C. The continuous increase of the thickness tends to inhibit selectivity. The mechanism of selectivity improvement of the sensors with different thickness of the ZIF-8 films is discussed.

Funder

National Museum of Nature and Science

Hubei Provincial Science and Technology Project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3