Trade-Off between Hydraulic Safety and Efficiency in Plant Xylem and Its Influencing Factors

Author:

Li Shan1,Wang Jing1,Lu Sen1,Salmon Yann23ORCID,Liu Peng1,Guo Junkang1

Affiliation:

1. Department of Environmental Science and Ecology, School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China

2. Institute for Atmospheric and Earth System Research (INAR)/Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, 00014 Helsinki, Finland

3. Institute for Atmospheric and Earth System Research (INAR)/Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland

Abstract

Forests are vital ecosystems that are increasingly threatened by environmental stress; exploring the possible trade-off between hydraulic safety and efficiency in plant xylem is crucial to understanding their environmental adaptation strategies. However, to date, there is no consensus whether such trade-offs exist among and within species. To better comprehend the mechanism of xylem water transport, in this review, we summarized previously published work on xylem hydraulic safety and efficiency trade-off from the inter-species, intra-species, and intra-tree perspectives and its influencing factors. We gathered data on xylem hydraulic safety and efficiency and their related anatomical traits, i.e., conduit diameter and inter-conduit pit membrane thickness, from a total of 653 plant species analyzed in 80 published papers. At the inter-species level, we confirmed that there is a weak hydraulic safety and efficiency trade-off. For gymnosperms and herbaceous species, the observed trade-off is stronger. At the intra-species level, the hydraulic safety and efficiency trade-off was found in individuals of the same species investigated in the literature. At the intra-tree level, there is a trade-off between hydraulic safety and efficiency for leaves, stems, and roots, and we confirmed the vessel widening hypothesis, i.e., vessel diameter in the outer wood increases from the top to the bottom of the tree. Additionally, pit membrane thickness increases as the tree height decreases, thus increasing the xylem hydraulic efficiency and affecting the trade-off. Finally, we discussed the environmental factors affecting the trade-off between hydraulic safety and efficiency in the xylem, such as plant habitats, temperature, rainfall, altitude, and soil. Further investigations of the bordered pit membrane from the three-dimensional perspective would be useful to understand the hydraulic safety and efficiency trade-off at the nanoscale.

Funder

National Natural Science Foundation of China

TALENT PROJECT OF SHAANXI UNIVERSITY OF SCIENCE AND TECHNOLOGY

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3