Temporal Dynamic of the Ratio between Monopartite Begomoviruses and Their Associated Betasatellites in Plants, and Its Modulation by the Viral Gene βC1

Author:

Wu Yi-Jie1,Liu Yi-Ming1,Li Heng-Yu1,Liu Shu-Sheng1,Pan Li-Long12ORCID

Affiliation:

1. Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China

2. The Rural Development Academy, Zhejiang University, Hangzhou 310058, China

Abstract

The begomovirus–betasatellite complex constantly threatens crops in Asia. However, the quantitative relationship between begomoviruses and betasatellites remains largely unknown. The quantities of tobacco curly shoot virus (TbCSV) and its betasatellite (TbCSB) and their ratio varied significantly in initial infection, and thereafter, the ratio tended to become constant. The TbCSB/TbCSV ratio in agrobacteria inoculum significantly affected that in plants in the initial infection but not thereafter. Null-mutation of βC1 that encodes a multifunctional protein important for pathogenesis in TbCSB significantly reduced the TbCSB/TbCSV ratio in plants. Viral inoculum plants with higher TbCSB/TbCSV ratios promoted whitefly transmission of the virus. The expression of AV1 encoded by TbCSV, βC1 encoded by TbCSB and the βC1/AV1 ratio varied significantly in the initial infection and thereafter the ratio tended to become constant. Additionally, the temporal dynamics of the ratio between another begomovirus and its betasatellite was similar to that of TbCSV and was positively regulated by βC1. These results indicate that the ratio between monopartite begomoviruses and betasatellites tend to become constant as infection progresses, and is modulated by βC1, but a higher betasatellite/begomovirus ratio in virally inoculated plants promotes virus transmission by whiteflies. Our findings provide novel insights into the association between begomoviruses and betasatellites.

Funder

National Key Research and Development Program

National Natural Science Foundation of China

earmarked fund for China Agriculture Research System

Publisher

MDPI AG

Subject

Virology,Infectious Diseases

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3