Advanced Denoising and Meta-Learning Techniques for Enhancing Smart Health Monitoring Using Wearable Sensors

Author:

Tefera Minyechil Alehegn1ORCID,Dehnaw Amare Mulatie1ORCID,Manie Yibeltal Chanie1,Yao Cheng-Kai1ORCID,Bogale Shegaw Demessie1ORCID,Peng Peng-Chun1

Affiliation:

1. Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan

Abstract

This study introduces a novel meta-learning method to enhance diabetes detection using wearable sensor systems in smart health applications. Wearable sensor technology often needs to operate accurately across a wide range of users, each characterized by unique physiological and behavioral patterns. However, the specific data for a particular application or user group might be scarce. Moreover, collecting extensive training data from wearable sensor experiments is challenging, time-consuming, and expensive. In these cases, meta-learning can be particularly useful. This model can quickly adapt to the nuances of new users or specific applications with minimal data. Therefore, to solve the need for a huge amount of training data and to enable the application of artificial intelligence (AI) in data-scarce scenarios, a meta-learning method is proposed. This meta-learning model has been implemented to forecast diabetes, resolve cross-talk issues, and accurately detect R peaks from overlapping electrocardiogram (ECG) signals affected by movement artifacts, poor electrode contact, electrical interference, or muscle activity. Motion artifacts from body movements, external conditions such as temperature, humidity, and electromagnetic interference, and the inherent quality and calibration of the sensor can all contribute to noise. Contact quality between the sensor and the skin, signal processing errors, power supply variations, user-generated interference from activities like talking or exercising, and the materials used in the wearable device also play significant roles in the overall noise in wearable sensor data and can significantly distort the true signal, leading to erroneous interpretations and potential diagnostic errors. Furthermore, discrete wavelet transform (DWT) was also implemented to improve the quality of the data and enhance the performance of the proposed model. The demonstrated results confirmed that with only a limited amount of target data, the proposed meta-learning and DWT denoising method can adapt more quickly and improve the detection of diabetes compared to the traditional method. Therefore, the proposed system is cost-effective, flexible, faster, and adaptable, reduces the need for training data, and can enhance the accuracy of chronic disease detection such as diabetes for smart health systems.

Funder

National Science and Technology Council, Taiwan

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3