Early Ransomware Detection with Deep Learning Models

Author:

Davidian Matan1,Kiperberg Michael1,Vanetik Natalia1ORCID

Affiliation:

1. Department of Software Engineering, Shamoon College of Engineering, Beer Sheva 84100, Israel

Abstract

Ransomware is a growing-in-popularity type of malware that restricts access to the victim’s system or data until a ransom is paid. Traditional detection methods rely on analyzing the malware’s content, but these methods are ineffective against unknown or zero-day malware. Therefore, zero-day malware detection typically involves observing the malware’s behavior, specifically the sequence of application programming interface (API) calls it makes, such as reading and writing files or enumerating directories. While previous studies have used machine learning (ML) techniques to classify API call sequences, they have only considered the API call name. This paper systematically compares various subsets of API call features, different ML techniques, and context-window sizes to identify the optimal ransomware classifier. Our findings indicate that a context-window size of 7 is ideal, and the most effective ML techniques are CNN and LSTM. Additionally, augmenting the API call name with the operation result significantly enhances the classifier’s precision. Performance analysis suggests that this classifier can be effectively applied in real-time scenarios.

Publisher

MDPI AG

Reference66 articles.

1. Cloudflare Inc. (2024, August 01). (n.d.) Cloudflare. What Is Ransomware?. Available online: https://www.cloudflare.com.

2. CrowdStrike (2024, August 01). 2024 Global Threat Report. Available online: https://www.crowdstrike.com.

3. Urooj, U., Al-rimy, B.A.S., Zainal, A., Ghaleb, F.A., and Rassam, M.A. (2021). Ransomware detection using the dynamic analysis and machine learning: A survey and research directions. Appl. Sci., 12.

4. Ransomware deployment methods and analysis: Views from a predictive model and human responses;Morgan;Crime Sci. J.,2021

5. Herrera Silva, J.A., Barona López, L.I., Valdivieso Caraguay, Á.L., and Hernández-Álvarez, M. (2019). A survey on situational awareness of ransomware attacks—Detection and prevention parameters. Remote Sens., 11.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3