FIVADMI: A Framework for In-Vehicle Anomaly Detection by Monitoring and Isolation

Author:

Mahbub Khaled1,Nehme Antonio1,Patwary Mohammad2,Lacoste Marc3,Allio Sylvain3

Affiliation:

1. College of Computing, Birmingham City University, Birmingham B5 5JU, UK

2. Digital Innovation & Solution Centre, University of Wolverhampton, Wolverhampton WV1 1LY, UK

3. Department of Security, Orange Labs, 38240 Meylan, France

Abstract

Self-driving vehicles have attracted significant attention in the automotive industry that is heavily investing to reach the level of reliability needed from these safety critical systems. Security of in-vehicle communications is mandatory to achieve this goal. Most of the existing research to detect anomalies for in-vehicle communication does not take into account the low processing power of the in-vehicle Network and ECUs (Electronic Control Units). Also, these approaches do not consider system level isolation challenges such as side-channel vulnerabilities, that may arise due to adoption of new technologies in the automotive domain. This paper introduces and discusses the design of a framework to detect anomalies in in-vehicle communications, including side channel attacks. The proposed framework supports real time monitoring of data exchanges among the components of in-vehicle communication network and ensures the isolation of the components in in-vehicle network by deploying them in Trusted Execution Environments (TEEs). The framework is designed based on the AUTOSAR open standard for automotive software architecture and framework. The paper also discusses the implementation and evaluation of the proposed framework.

Funder

Orange Labs, France

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3