Author:
Eftimov Petar,Yokoi Norihiko,Peev Nikola,Georgiev Georgi
Abstract
The wettability of silicone hydrogel (SiHy) contact lens (CLs) is crucial for the pre-lens tear film stability throughout the day. Therefore, sessile drop and captive bubble setups were used to study the advancing and receding water contact angles (CA) of four SiHy materials: narafilcon A (TE), senofilcon A (AOD), stenfilcon A (MD), and delefilcon A (DT). TE and AOD have 48% and 38% water content, respectively, and no surface coating. MD (54% water) implements “smart chemistry” with just 4.4% bulk silicone content, while DT has >80% water at its surface. These SiHy were subjected to continuous blink-like air exposure (10 s)/rehydration (1s) cycles for 0, 1, 2, 3, 4, 6, 8, 10, 12, 14, and 16 h. The advancing CA, which measures the rehydration propensity of the CL surface, proved to be the most sensitive parameter to discriminate between the samples. The order of performance for the entire time scale was DT > MD >> AOD ≥ TE. The extended desiccation/rehydration cycling increased the differences between the CA of DT and MD compared to AOD and TE. This suggests that the low Si surface content and the high surface hydration are major determinants of SiHy wettability.
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献