Purification, Characterization and Degradation Performance of a Novel Dextranase from Penicillium cyclopium CICC-4022

Author:

Huang Ruijie,Zhong Lei,Xie FengweiORCID,Wei Liming,Gan Lanfang,Wang Xuejiao,Liao Anping

Abstract

A novel dextranase was purified from Penicillium cyclopium CICC-4022 by ammonium sulfate fractional precipitation and gel filtration chromatography. The effects of temperature, pH and some metal ions and chemicals on dextranase activity were investigated. Subsequently, the dextranase was used to produce dextran with specific molecular mass. Weight-average molecular mass (Mw) and the ratio of weight-average molecular mass/number-average molecular mass, or polydispersity index (Mw/Mn), of dextran were measured by multiple-angle laser light scattering (MALS) combined with gel permeation chromatography (GPC). The dextranase was purified to 16.09-fold concentration; the recovery rate was 29.17%; and the specific activity reached 350.29 U/mg. Mw of the dextranase was 66 kDa, which is similar to dextranase obtained from other Penicillium species reported previously. The highest activity was observed at 55 °C and a pH of 5.0. This dextranase was identified as an endodextranase, which specifically degraded the α-1,6 glucosidic bonds of dextran. According to metal ion dependency tests, Li+, Na+ and Fe2+ were observed to effectively improve the enzymatic activity. In particular, Li+ could improve the activity to 116.28%. Furthermore, the dextranase was efficient at degrading dextran and the degradation rate can be well controlled by the dextranase activity, substrate concentration and reaction time. Thus, our results demonstrate the high potential of this dextranase from Penicillium cyclopium CICC-4022 as an efficient enzyme to produce specific clinical dextrans.

Funder

Guangxi biological polysaccharide separation, purification and modification research platform

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3