A Scalable, Programmable Neural Stimulator for Enhancing Generalizability in Neural Interface Applications

Author:

Yin Meng12ORCID,Wang Xiao12ORCID,Zhang Liuxindai12,Shu Guijun12,Wang Zhen12,Huang Shoushuang12,Yin Ming12

Affiliation:

1. State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Haikou 570228, China

2. Key Laboratory of Biomedical Engineering of Hainan Province, One Health Institute, Hainan University, Haikou 570228, China

Abstract

Each application of neurostimulators requires unique stimulation parameter specifications to achieve effective stimulation. Balancing the current magnitude with stimulation resolution, waveform, size, and channel count is challenging, leading to a loss of generalizability across broad neural interfaces. To address this, this paper proposes a highly scalable, programmable neurostimulator with a System-on-Chip (SOC) capable of 32 channels of independent stimulation. The compliance voltage reaches up to ±22.5 V. A pair of 8-bit current-mode DACs support independent waveforms for source and sink operations and feature a user-selectable dual range for low-current intraparenchymal microstimulation with a resolution of 4.31 μA/bit, as well as high current stimulation for spinal cord and DBS applications with a resolution of 48.00 μA/bit, achieving a wide stimulation range of 12.24 mA while maintaining high-resolution biological stimulation. A dedicated communication protocol enables full programmable control of stimulation waveforms, effectively improving the range of stimulation parameters. In vivo electrophysiological experiments successfully validate the functionality of the proposed stimulator. This flexible stimulator architecture aims to enhance its generality across a wide range of neural interfaces and will provide more diverse and refined stimulation strategies.

Funder

Science and Technology Innovation 2030-Major Project

National Natural Science Foundation of China

Major Science and Technology Projects of Hainan Province

Key R&D Project of Hainan Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3