Directed Evolution of Protein-Based Sensors for Anaerobic Biological Activation of Methane

Author:

Bahrami Moghadam Ehsan1,Nguyen Nam1,Wang Yixi1ORCID,Cirino Patrick C.1ORCID

Affiliation:

1. Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204-4004, USA

Abstract

Microbial alkane degradation pathways provide biological routes for converting these hydrocarbons into higher-value products. We recently reported the functional expression of a methyl-alkylsuccinate synthase (Mas) system in Escherichia coli, allowing for the heterologous anaerobic activation of short-chain alkanes. However, the enzymatic activation of methane via natural or engineered alkylsuccinate synthases has yet to be reported. To address this, we employed high-throughput screening to engineer the itaconate (IA)-responsive regulatory protein ItcR (WT-ItcR) from Yersinia pseudotuberculosis to instead respond to methylsuccinate (MS, the product of methane addition to fumarate), resulting in genetically encoded biosensors for MS. Here, we describe ItcR variants that, when regulating fluorescent protein expression in E. coli, show increased sensitivity, improved overall response, and enhanced specificity toward exogenously added MS relative to the wild-type repressor. Structural modeling and analysis of the ItcR ligand binding pocket provide insights into the altered molecular recognition. In addition to serving as biosensors for screening alkylsuccinate synthases capable of methane activation, MS-responsive ItcR variants also establish a framework for the directed evolution of other molecular reporters, targeting longer-chain alkylsuccinate products or other succinate derivatives.

Funder

National Science Foundation

UH Center for Carbon Management in Energy

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Stiffness-Tunable Functional Liquid Metal Sponge;2024 IEEE International Conference on Real-time Computing and Robotics (RCAR);2024-06-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3