Structure Restrengthening Process and Mechanical Properties of Damaged Weakly Cemented Mudstone

Author:

Wang Shuai1,Han Lijun2,Zhang Shukun1,Wang Haohao1

Affiliation:

1. School of City and Architecture Engineering, Zaozhuang University, Zaozhuang 277160, China

2. State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou 221116, China

Abstract

The stable surrounding rock is the key to ensuring tunnel availability in weakly cemented strata. In recent years, the joint support scheme of “steel beam + anchor net rope + grouting” was proposed based on numerical analysis, laboratory tests, and field tests, which was efficient in the short term. However, the effect of time and environment on the support structure was neglected. The weakly cemented mudstone was sensitive to water, with disintegration soaking up water and consolidation losing water. In this paper, analogy-based remolded soil puts forward the structural restrengthening of damaged mudstone. It was believed that when the clay content of a rock mass exceeded the critical proportion, the restrengthened structure could be regained under certain conditions of consolidation stress and water content. On the one hand, the residual strength of broken mudstone can be improved; on the other hand, pores and cracks are filled with minerals, restraining further water absorption. The structural strengthening feasibility of damaged mudstone was verified based on the geological characteristics and microscopic and strength tests. It is found that restrengthening specimens form cementation on the contacts of broken blocks. The greater the consolidation stress and moisture content, the denser the structure and the higher the strength. The research contributes to supporting the construction of weakly cemented mudstone.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3