Statistical Modelling of Biosorptive Removal of Hexavalent Chromium Using Dry Raw Biomasses of Dioscorea rotundata, Elaeis guineensis, Manihot esculenta, Theobroma cacao and Zea mays

Author:

Villabona-Ortíz Angel1ORCID,Tejada-Tovar Candelaria1ORCID,González-Delgado Ángel Darío2ORCID

Affiliation:

1. Process Design and Biomass Utilization Research Group (IDAB), Chemical Engineering Department, Universidad de Cartagena, Avenida del Consulado St. 30, Cartagena de Indias 130015, Colombia

2. Nanomaterials and Computer Aided Process Engineering Research Group (NIPAC), Chemical Engineering Department, Universidad de Cartagena, Avenida del Consulado St. 30, Cartagena de Indias 130015, Colombia

Abstract

Hexavalent chromium [Cr (VI)] is a highly toxic and hazardous contaminant that poses serious health risks to both humans and the environment. Its presence in water sources can lead to severe health issues, including various types of cancer and respiratory ailments. Therefore, developing efficient and effective methods for Cr (VI) removal is crucial in ensuring safe and clean water supplies. The aim of this research is the environmentally responsible elimination of hexavalent chromium by bioadsorption using corn residues (CR), palm fiber (PF), and the peels of yam (YP), cassava (CP), and cocoa (CH). The study was conducted with varying levels of pH, bioadsorbent quantity, temperature, and adsorbent particle size at 200 rpm, with an initial concentration of 100 mg/L and 24 h of contact time to improve the adsorption efficiency. The process variables were evaluated and optimized using the statistical technique response surface methodology (RSM). The SEM-EDS analysis revealed that the predominant elements in the structure of the bioadsorbents were carbon and oxygen. Furthermore, the adsorption process led to the incorporation of Cr (VI) into the structure of the biomaterials, as indicated by their EDS spectra. The maximal adsorption efficiency of 99.11% was obtained at pH 2, bioadsorbent dose of 0.03 mg, 30 °C, and 0.5 mm of particle size. Various equilibrium isotherms were utilized to fit and analyze the adsorption data. The assessed maximum adsorption capacities were 38.84, 56.88, 52.82, 138.94, and 240,948.7 mg/g for YP, PF, CP, CH, and CR, respectively. The adsorption data exhibited conformity with the Freundlich and Redlich–Peterson isotherm models (R2 = 0.95), indicating that the phenomenon occurs in a multilayer. Pseudo-second order and Elovich kinetic models adjusted the kinetics of chromium (VI), suggesting that the mechanism could be controlled by chemisorption. Therefore, the residual biomasses evaluated can serve as a cost-effective adsorbent for Cr (VI) removal, and the use of RSM enables efficient modeling and prediction of the adsorption process.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3