Temperature, Ageing and Thermal Management of Lithium-Ion Batteries

Author:

Spitthoff Lena,Shearing Paul R.ORCID,Burheim Odne Stokke

Abstract

Heat generation and therefore thermal transport plays a critical role in ensuring performance, ageing and safety for lithium-ion batteries (LIB). Increased battery temperature is the most important ageing accelerator. Understanding and managing temperature and ageing for batteries in operation is thus a multiscale challenge, ranging from the micro/nanoscale within the single material layers to large, integrated LIB packs. This paper includes an extended literature survey of experimental studies on commercial cells investigating the capacity and performance degradation of LIB. It compares the degradation behavior in terms of the influence of operating conditions for different chemistries and cell sizes. A simple thermal model for linking some of these parameters together is presented as well. While the temperature appears to have a large impact on ageing acceleration above room temperature during cycling for all studied cells, the effect of SOC and C rate appear to be rather cell dependent.Through the application of new simulations, it is shown that during cell testing, the actual cell temperature can deviate severely from the reported temperature depending on the thermal management during testing and C rate. It is shown, that the battery lifetime reduction at high C rates can be for large parts due to an increase in temperature especially for high energy cells and poor cooling during cycling studies. Measuring and reporting the actual battery (surface) temperature allow for a proper interpretation of results and transferring results from laboratory experiments to real applications.

Funder

Research Council of Norway

Norges Teknisk-Naturvitenskapelige Universitet

The Royal Academy of Engineering

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3