Solving Single- and Multi-Objective Optimal Reactive Power Dispatch Problems Using an Improved Salp Swarm Algorithm

Author:

Tudose Andrei M.ORCID,Picioroaga Irina I.,Sidea Dorian O.,Bulac Constantin

Abstract

The optimal reactive power dispatch (ORPD) problem represents a fundamental concern in the efficient and reliable operation of power systems, based on the proper coordination of numerous devices. Therefore, the ORPD calculation is an elaborate nonlinear optimization problem that requires highly performing computational algorithms to identify the optimal solution. In this paper, the potential of metaheuristic methods is explored for solving complex optimization problems specific to power systems. In this regard, an improved salp swarm algorithm is proposed to solve the ORPD problem for the IEEE-14 and IEEE-30 bus systems, by approaching the reactive power planning as both a single- and a multi- objective problem and aiming at minimizing the real power losses and the bus voltage deviations. Multiple comparison studies are conducted based on the obtained results to assess the proposed approach performance with respect to other state-of-the-art techniques. In all cases, the results demonstrate the potential of the developed method and reflect its effectiveness in solving challenging problems.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3