Initial Results of an Extensive, Long-Term Study of the Forecasting of Voltage Sags

Author:

De Santis MicheleORCID,Di Stasio Leonardo,Noce Christian,Verde PaolaORCID,Varilone PietroORCID

Abstract

This paper presents the preliminary results of our research activity aimed at forecasting the number of voltage sags in distribution networks. The final goal of the research is to develop proper algorithms that the network operators could use to forecast how many voltage sags will occur at a given site. The availability of four years of measurements at Italian Medium Voltage (MV) networks allowed the statistical analyses of the sample voltage sags without performing model-based simulations of the electric systems in short-circuit conditions. The challenge we faced was to overcome the barrier of the extremely long measurement times that are considered mandatory to obtain a forecast with adequate confidence. The method we have presented uses the random variable time to next event to characterize the statistics of the voltage sags instead of the variable number of sags, which usually is expressed on an annual basis. The choice of this variable allows the use of a large data set, even if only a few years of measurements are available. The statistical characterization of the measured voltage sags by the variable time to next event requires preliminary data-conditioning steps, since the voltage sags that are measured can be divided in two main categories, i.e., rare voltage sags and clusters of voltage sags. Only the rare voltage sags meet the conditions of a Poisson process, and they can be used to forecast the performance that can be expected in the future. However, the clusters do not have the characteristics of memoryless events because they are sequential, time-dependent phenomena the occurrences of which are due to exogenic factors, such as rain, lightning strikes, wind, and other adverse weather conditions. In this paper, we show that filtering the clusters out from all the measured sags is crucial for making successful forecast. In addition, we show that a filter, equal for all of the nodes of the system, represents the origin of the most important critical aspects in the successive steps of the forecasting method. In the paper, we also provide a means of tracking the main problems that are encountered. The initial results encouraged the future development of new efficient techniques of filtering on a site-by-site basis to eliminate the clusters.

Funder

Ministero dell’Istruzione, dell’Università e della Ricerca

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference37 articles.

1. EN50160, Voltage Characteristics of Electricity Supplied by Public Electricity Networks,2016

2. Understanding Power Quality Problems: Voltage Sags and Interruptions;Bollen,1999

3. Complete matrix formulation of fault-position method for voltage-dip characterisation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3