Multi-Objective Optimization of a Hybrid Nanogrid/Microgrid: Application to Desert Camps in Hafr Al-Batin

Author:

Bouchekara Houssem Rafik Al-HanaORCID,Shahriar Mohammad ShoaibORCID,Javaid Muhammad SharjeelORCID,Sha’aban Yusuf AbubakarORCID,Ramli Makbul Anwari MuhammadORCID

Abstract

This paper presents an optimal design for a nanogrid/microgrid for desert camps in the city of Hafr Al-Batin in Saudi Arabia. The camps were designed to operate as separate nanogrids or to operate as an interconnected microgrid. The hybrid nanogrid/microgrid considered in this paper consists of a solar system, storage batteries, diesel generators, inverter, and load components. To offer the designer/operator various choices, the problem was formulated as a multi-objective optimization problem considering two objective functions, namely: the cost of electricity (COE) and the loss of power supply probability (LPSP). Furthermore, various component models were implemented, which offer a variety of equipment compilation possibilities. The formulated problem was then solved using the multi-objective evolutionary algorithm, based on both dominance and decomposition (MOEA/DD). Two cases were investigated corresponding to the two proposed modes of operation, i.e., nanogrid operation mode and microgrid operation mode. The microgrid was designed considering the interconnection of four nanogrids. The obtained Pareto front (PF) was reported for each case and the solutions forming this front were discussed. Based on this investigation, the designer/operator can select the most appropriate solution from the available set of solutions using his experience and other factors, e.g., budget, availability of equipment and customer-specific requirements. Furthermore, to assess the quality of the solutions found using the MOEA/DD, three different methods were used, and their results compared with the MOEA/DD. It was found that the MOEA/DD obtained better results (nondominated solutions), especially for the microgrid operation mode.

Funder

Deanship of Scientific Research, University of Hafr Al-Batin

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3