Test Research on Residual Mechanical Properties of Fiber-Reinforced Concrete Segments after High Temperature

Author:

Zong Gang1,Wang Yao1ORCID,Wang Yong2,Ren Zhaoqing2

Affiliation:

1. College of Architecture and Engineering, Yancheng Polytechnic College, Yancheng 224005, China

2. Jiangsu Key Laboratory of Environmental Impact and Structural Safety in Engineering, China University of Mining and Technology, Xuzhou 221008, China

Abstract

In order to research the residual mechanical properties of concrete shield tunnel segments after exposure to high temperatures, two types of concrete segments were designed: a self-compacting concrete segment and a mixed fiber (steel fiber and polypropylene fiber) self-compacting concrete segment. The mechanical properties of seven blocks of concrete segments (five segments after high-temperature exposure and two segments at room temperature) were tested to analyze the influence of different loading sizes and fibers on the development of cracks after high temperature, failure mode, crack width, deformation, and so on in the concrete segments. The results showed that the damage model of the segment after exposure to high temperature and the segment at room temperature were crushed in the pressurized zone, but the high temperature had little effect on the concrete in the pressurized area. The size of the preload at high temperatures had little effect on the remaining load capacity, and the effect on the number of cracks was mainly concentrated on the internal arc surface of the segment. After high-temperature exposure, the number of cracks on the sides and inner arc surface of the segment increased, and the development of cracks was concentrated as several major cracks at high temperatures. When fibers were incorporated, the cracks in the segment became obvious, where the cracks at the loading point became denser and the interval distance became smaller.

Funder

Open Project of Provincial-level Scientific Research Platforms of Yancheng Polytechnic College

campus-level scientific research project of Yancheng Polytechnic College

Project of the Ministry of Science and Technology High-end Foreign Experts of China

Yancheng Foreign Expert Workshop

Excellent Young Backbone Teacher of Qinglan Project of Jiangsu Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3