Compression–Shear Specimen Stress-State Response and Distribution Characteristics with Wide Stress Triaxiality

Author:

Xu Yiwei1ORCID,Zhao Chunjiang1,Wang Chen1ORCID,Qiu Yunlong2,Zhao Xiaosong1,Li Shaolu1,Zhao Ning1

Affiliation:

1. School of Mechanical Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China

2. Zhongxing Energy Equipment Co., Ltd., Nantong 226121, China

Abstract

Conventional methods for studying the plastic behavior of materials involve uniaxial tension and uniaxial compression. However, in the metal rolling process, the deformation zone undergoes a complex loading of multidirectional compression and shear. Characterizing the corresponding plastic evolution process online poses challenges, and the existing specimen structures struggle to accurately replicate the deformation-induced loading characteristics. In this study, we aimed to design a compression–shear composite loading specimen that closely mimics the actual processing conditions. The goal was to investigate how the specimen structure influences the stress–strain response in the deformation zone. Using commercial finite element software, a compression–shear composite loading specimen was meticulously designed. Five 304 stainless steel specimens underwent uniaxial compressive loading, with variation angles between the preset notch angle (PNA) of the specimen and compression direction. We employed digital image correlation methods to capture the impact of the PNA on the strain field during compression. Additionally, we aimed to elucidate the plastic response resulting from the stress state of the specimen, particularly in relation to specimen fracture and microstructural evolution.

Funder

National Natural Science Foundation of China

Shanxi Provincial Key Research and Development Program

Applied Basic Research Project of Shanxi Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3