Mechanical Characteristics of Individualized Biodegradable Augmentation Scaffold—In Vitro Pilot Study

Author:

Bjelica Roko1ORCID,Prpić Vladimir2ORCID,Drvar Nenad3,Ćatić Amir24ORCID,Gabrić Dragana14ORCID

Affiliation:

1. Department of Oral Surgery, School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia

2. Department of Fixed Prosthodontics, School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia

3. Topomatika, LLC, 10431 Sveta Nedelja, Croatia

4. University Dental Clinic, University Hospital Centre Zagreb, 10000 Zagreb, Croatia

Abstract

The alveolar ridge reconstruction of vertical and combined bone defects is a non-predictable procedure with varying percentages of success. The greatest challenge for vertical and combined bone augmentation is to maintain mechanical stability of the bone graft; therefore, it is mandatory to provide and preserve space for bone regeneration. The development of biomaterials and 3D printing has enabled the use of polymer scaffolds in the reconstruction of alveolar ridge defects. The aim of this pilot study was to evaluate the mechanical characteristics of an innovative individualized biodegradable polylactic acid (PLA) scaffold, under dynamic conditions, simulating biodegradation and the influence of masticatory forces. After the design and 3D printing of PLA scaffolds, two groups of 27 scaffolds were formed according to the compression testing procedure. The compression tests were performed in occlusal and lateral directions. In each of the two groups, nine subgroups of three scaffolds were formed for different testing periods during in vitro degradation with a total period of 16 weeks. Results showed that biodegradation and load application had no significant influence on mechanical characteristics of tested scaffolds. It can be concluded that simulated masticatory forces and biodegradation do not significantly influence the mechanical characteristics of an individualized biodegradable augmentation scaffold.

Funder

EU project: “Biorazgradivi implantati za inženjerstvo koštanog tkiva”

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3