MOP−18−Derived CuO Fiber for Hybrid Supercapacitor Electrodes

Author:

Haque Syed Fahad Bin1ORCID,Balkus Kenneth J.1,Ferraris John P.1ORCID

Affiliation:

1. Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080-3021, USA

Abstract

This study explores a simple method of fabricating hybrid supercapacitor electrodes, which could potentially broaden the application of this technology. The method involves electrospinning a uniform solution of Matrimid/Metal−Organic Polyhedra 18 (MOP−18) followed by carbonization at a relatively low temperature of 700 °C in air, rather than in an inert atmosphere, to create free−standing, redox−active hybrid supercapacitor electrodes. Additionally, the synthesis procedure requires no stabilization or activation steps, which enhances the cost effectiveness of the synthesized electrode materials. The resulting C/CuO composite was used as the working electrode, with a polyacrylonitrile (PAN)/Poly(methyl methacrylate) (PMMA) carbon nanofiber (CNF) electrode as the counter and 6 M KOH as the electrolyte in a T−cell configuration. The cell performance and redox activity were evaluated using cyclic voltammetry (CV), galvanostatic charge–discharge (GCD), electrochemical impedance spectroscopy (EIS) and cycling stability tests. Additionally, the physical and chemical structures of the electrode materials were assessed using X−ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron spectroscopy (TEM), X−ray diffractometry (PXRD), surface area analysis and other characterization techniques. The electrode material demonstrated a specific capacitance of up to 206 F/g. Supercapacitors utilizing this material display an energy density of 10.3 Wh/kg (active material) at a current density of 1 A/g in electrochemical testing.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3