A Sustainable Supply Chain Framework for Dairy Farming Operations: A System Dynamics Approach

Author:

Shamsuddoha Mohammad1,Nasir Tasnuba1ORCID,Hossain Niamat Ullah Ibne2ORCID

Affiliation:

1. Department of Management and Marketing, Western Illinois University, Macomb, IL 61455, USA

2. Department of Engineering Management, Arkansas State University, Jonesboro, AR 72401, USA

Abstract

The dairy industry plays a significant role in the global food system, providing essential nutrients for human consumption and creating rural employment. A small-scale dairy can assist a family in maintaining their livelihoods in Bangladesh. However, it is also associated with various environmental and social impacts, making it crucial for achieving sustainability. The triple bottom line of sustainability intends to achieve sustainability through improving productivity, implementing sustainable practices, and incorporating waste management. The dairy industry can continue to provide nutritious diets, ensuring sustainability practices. This research is a follow-up paper of Nasir et al. to find better sustainable results. It considers the triple bottom line of sustainability theory to improve the farm environment by reducing waste, managing resources efficiently, and promoting environmentally friendly practices. This paper is a case study on a dairy farm of 400 cattle in Bangladesh. The system dynamics method and simulation modeling were employed to draw dairy supply chain networks and examine the existing dataset to find better utilization of the dairy waste produced on the farm. Consequently, the simulation model incorporates waste management and value addition concepts to find better resource exploitation for gaining sustainable outcomes. Finally, this paper summarizes the simulation outcomes and articulates possible extensions for achieving further economic, social, and environmental benefits for the industry and surrounding community.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference54 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3