The Impact of In-Vehicle Traffic Lights on Driving Characteristics in the Presence of Obstructed Line-of-Sight

Author:

Zhang Yunshun12ORCID,Xie Qishuai1,Gao Minglei1,Guo Yuchen1ORCID

Affiliation:

1. Automobile Engineering Research Institute, Jiangsu University, Zhenjiang 212013, China

2. Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan

Abstract

In-vehicle traffic lights (IVTLs) have been identified as a potential means of eco-driving. However, the extent to which they influence driving characteristics in the event of obstructed on-road traffic lights (ORTLs) has yet to be fully examined. Firstly, the situation of partially deployed IVTLs in both vehicles was analyzed to identify the factors that affect driving characteristics. Through the following distance model, relative vehicle speed, acceleration and deceleration, and following distance were recognized as the contributing factors. The evaluation indicators for driving characteristics were thereby further established. Then, a hardware-in-the-loop simulation platform was built using PreScan 8.5-MATLAB/Simulink R2018b joint simulation software and a Logitech G29 device. IVTLs were implemented using modules in the joint simulation software. Finally, under the scenarios of obstructed ORTLs and various deployment conditions of IVTLs, the original data were collected from 50 experimental subjects with simulated driving. The subjects included 25 males and 25 females, all of whom were non-professional drivers, with ages ranging from 20 to 40 years old. The conclusion was reached that IVTLs could improve driving comfort by approximately 10% in sunny weather (p = 0.008 < 0.05, p = 0.023 < 0.05; p = 0.046 < 0.05, p = 0.001 < 0.05), driving maneuverability by approximately 30% in foggy weather (p = 0.033 < 0.05), and driving safety by approximately 50% in the ORTLs obstructed by a truck scenario (p = 0.019 < 0.05). In general, even if only one vehicle was equipped with IVTLs, certain gain effects on the driving characteristics of both vehicles could still be provided.

Funder

Post-Doctoral Research Foundation of China

Jiangsu University

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3