Affiliation:
1. Marine Electrical Engineering College, Dalian Maritime University, Dalian 116026, China
Abstract
Most existing model predictive control (MPC) methods overlook the network resource limitations of autonomous underwater vehicles (AUVs), limiting their applicability in real systems. This article addresses this gap by introducing an adaptive transmission, interval-based, and self-triggered model predictive control for AUVs operating under ocean disturbances. This approach enhances system stability while reducing resource consumption by optimizing MPC update frequencies and communication resource usage. Firstly, the method evaluates the discrepancy between system states at sampling instants and their optimal predictions. This significantly reduces the conservatism in the state-tracking errors caused by ocean disturbances compared to traditional approaches. Secondly, a self-triggering mechanism was employed, limiting information exchange to specified triggering instants to conserve communication resources more effectively. Lastly, by designing a robust terminal region and optimizing parameters, the recursive feasibility of the optimization problem is ensured, thereby maintaining the stability of the closed-loop system. The simulation results illustrate the efficacy of the controller.
Funder
National Natural Science Foundation of China
Outstanding Young Talent Program of Dalian