Adaptive Transmission Interval-Based Self-Triggered Model Predictive Control for Autonomous Underwater Vehicles with Additional Disturbances

Author:

Zhang Pengyuan1ORCID,Hao Liying1ORCID,Wang Runzhi1ORCID

Affiliation:

1. Marine Electrical Engineering College, Dalian Maritime University, Dalian 116026, China

Abstract

Most existing model predictive control (MPC) methods overlook the network resource limitations of autonomous underwater vehicles (AUVs), limiting their applicability in real systems. This article addresses this gap by introducing an adaptive transmission, interval-based, and self-triggered model predictive control for AUVs operating under ocean disturbances. This approach enhances system stability while reducing resource consumption by optimizing MPC update frequencies and communication resource usage. Firstly, the method evaluates the discrepancy between system states at sampling instants and their optimal predictions. This significantly reduces the conservatism in the state-tracking errors caused by ocean disturbances compared to traditional approaches. Secondly, a self-triggering mechanism was employed, limiting information exchange to specified triggering instants to conserve communication resources more effectively. Lastly, by designing a robust terminal region and optimizing parameters, the recursive feasibility of the optimization problem is ensured, thereby maintaining the stability of the closed-loop system. The simulation results illustrate the efficacy of the controller.

Funder

National Natural Science Foundation of China

Outstanding Young Talent Program of Dalian

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3