Experimental and Simulation Study on Flow-Induced Vibration of Underwater Vehicle

Author:

Zou Yucheng1ORCID,Du Yuan23,Zhao Zhe1,Pang Fuzhen1,Li Haichao1,Hui David4

Affiliation:

1. College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China

2. School of Marine Engineering and Technology, Sun Yat-sen University, Zhuhai 519000, China

3. Southern Marine Science and Engineering, Guangdong Laboratory (Zhuhai), Zhuhai 519000, China

4. Department of Mechanical Engineering, University of New Orleans, New Orleans, LA 70124, USA

Abstract

At high speeds, flow-induced vibration noise is the main component of underwater vehicle noise. The turbulent fluctuating pressure is the main excitation source of this noise. It can cause vibration of the underwater vehicle’s shell and eventually radiate noise outward. Therefore, by reducing the turbulent pressure fluctuation or controlling the vibration of the underwater vehicle’s shell, the radiation noise of the underwater vehicle can be effectively reduced. This study designs a cone–column–sphere composite structure. Firstly, the effect of fluid–structure coupling on pulsating pressure is studied. Next, a machine learning method is used to predict the turbulent pressure fluctuations and the fluid-induced vibration response of the structure at different speeds. The results were compared with experimental and numerical simulation results. The results show that the deformation of the structure will affect the flow field distribution and pulsating pressure of the cylindrical section. The machine learning method based on the BP (back propagation) neural network model can quickly predict the pulsating pressure and vibration response of the cone–cylinder–sphere composite structure under different Reynolds numbers. Compared with the experimental results, the error of the machine learning prediction results is less than 7%. The research method proposed in this paper provides a new solution for the rapid prediction and control of hydrodynamic vibration noise of underwater vehicles.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3