Laboratory Evaluation on Performance of Recycled Asphalt Binder and Mixtures under Short-Term Aging Conditions

Author:

Zhu Yuefeng,Zhang Jiawei,Si Chundi,Yan Tao,Li Yanwei

Abstract

As asphalt materials are exposed to very high temperatures before construction, such as in the transportation stage or the storage stage, short-term aging of asphalt material occurs. At these stages, diffusion or blending between RAP (reclaimed asphalt pavement) binder and virgin binder may occur. In this study, recycled blends, incorporating SBS modified binder, RAP binder and recycling agents, were prepared with incremental RAP binders of up to 40%, and RTFO (Rolling Thin-Film Oven) tests in condition times of 300 and 600 min were conducted on the recycled blends. Characterization tests included ΔTcr, complex modulus master curve, a G-R (Glover-Rowe) parameter on recycled blends, and dynamic modulus, fracture test, and midpoint bending fatigue tests on mixtures. The ΔTcr and the G-R parameter results showed that aging time significantly affected the cracking resistance of the recycled blends. Compared to the virgin SBS modified asphalt binder, the recycled blends tended to be more sensitive to the aging process. The complex modulus master curve of binders and the dynamic modulus and phase angle results of mixtures show that the binder/mixtures appear to be stiffer with an increase in the RAP binder dosage. Generally, the low temperature cracking and fatigue cracking resistance of virgin mixtures is better than that of RAP mixtures, especially for high RAP binder dosage mixtures, and longer aging times have a negative impact on the cracking resistance of mixture. However, when we extend RTFO aging time, the higher dosage of RAP mixtures show better cracking resistance than the lower dosage of RAP mixtures. The reason for this could be that the chemical process may occur between the virgin SBS modified asphalt binder and the RAP binder at high temperatures.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hebei Province

Department of Education of Hebei Province

Department of Human Resources and Social Security of Hebei Province

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3