Determination of Changes in the Quality of Surface Water in the River—Reservoir System

Author:

Gruss Łukasz,Wiatkowski MirosławORCID,Pulikowski Krzysztof,Kłos AndrzejORCID

Abstract

Assessing the changing parameters of water quality at different points in the river–reservoir system can help prevent river pollution and implement remedial policies. It is also crucial in modeling water resources. Multivariate statistical analysis is useful for the analysis of changes in surface water quality. It helps to identify indicators that may be responsible for the eutrophication process of a reservoir. Additionally, the analysis of the water quality profile and the water quality index (WQI) is useful in assessing water pollution. These tools can support and verify the results of a multivariate statistical analysis. In this study, changes in water quality parameters of the Turawa reservoir (TR), and the Mała Panew river at the point below the Turawa reservoir (bTR) and above the Turawa reservoir (aTR), were analyzed. The analyzed period was from 2019 to 2020 (360 samples were analyzed). It was found that TN, NO2-N, and NO3-N decreased after passing through the Turawa reservoir. Nevertheless, principal component analysis (PCA) and redundancy analysis (RDA) showed that NO2-N and NO3-N contribute to the observed variability of the water quality in the river-reservoir system. PCA showed that pH and PO4-P had a lower impact on the water quality in the reservoir than nitrogen compounds. Additionally, RDA proved that the values of the NO3-N and NO2-N indicators obtained the highest values at the aTR point, PO4-P at the bTR, and pH at the TR. This allows the conclusion that the Turawa reservoir reduced the concentration of NO2-N and NO3-N in comparison with the concentration of these compounds flowing into the reservoir. PCA and RDA showed that both parameters (NO2-N and NO3-N) may be responsible for the eutrophication process of the Turawa reservoir. The analysis of short-term changes in water quality data may reveal additional sources of water pollution. High temperatures and alkaline reaction may cause the release of nitrogen and phosphorus compounds from sediments, which indicates an increased concentration of TP, PO4-P, and Norg in the waters at the TR point, and TP, PO4-P, and NH4-N concentrations at the bTR point. The water quality profile combined with PCA and RDA allows more effective monitoring for the needs of water management in the reservoir catchment area. The analyzed WQI for water below the reservoir (bTR) was lower than that of the reservoir water (TR), which indicates an improvement in water after passing through the reservoir.

Funder

Narodowe Centrum Badań i Rozwoju

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3